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Abstract. A linear rate equation describing fragmentation processes, which includes both 
continuous and discrete loss of mass, is reduced to a partial differential equation. Different 
types of similarily solutions are obtained by applying Lie's similarity method. 

1. Introduction 

The fragmentation process is of considerable interest in several fields of physics. For 
an analytical treatment of fragmentation, continuous models are more appropriate. 
Fragmentation of continuous models has been discussed by McGrady and Ziff (1987), 
Cheng and Redner (1988) and Corngold and Williams (1989). Recently Edwards ef a1 
(1990) and Cai et a1 (1991) studied fragmentation processes which do not conserve 
solid mass, where the rate equalion includes both continuous and discrete loss of solid 
mass. 

Since continuous and discrete mass loss involve no collisions between particles and 
depend only on the interaction between each particle and its environment, assumed 
homogeneous, the rate equation for fragmentation with mass loss is linear. Huang et 
a1 (1991), used Laplace transformation, to give a series solution for fragmentation with 
continuous and discrete mass loss. 

In work on similarity solutions Baumann et al(1991). for the first time in this field, 
discussed similarity solutions of the rate equation for discrete mass loss in the absence 
of continuous mass loss, where c=O in (2). In this work the Lie similarity method is 
used to obtain solutions of the linear rate equation of Edwards et ai (1990), which 
describe fragmentation with both continuous and discrete loss of mass. 

2. Partial differential form of the rate equation 

Following Huang et al(1992) and Edwards et a1 (1990), the linear rate equation which 
describes the evolution of the particle mass distribution n(x, t )  for a system of particles 
undergoing fragmentation with continuous mass loss is given by 

(1) 
a 
-n (x ,  1 )  = -a(x)n(x ,  t ) +  
at 

where a(x) is the fragmentation rate, K(x ,  y )  is the distribution of daughter particle 

a 6 a(y)K(x, M y ,  0 d y f a ,  (c(x)n(x,  I)) 
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mass x spawned by the fragmentation of a parent particle of mass y, and c(.Y) is the 
continuous mass loss rate. The familiar rate equation, with discrete loss of mass, for 
polymer degradation considered by McGrady et ai (1987) and Baumann ct a/ (1991), 
follows from (1) by setting c(.Y) = O .  

In  the following we consider the power-law rates. which, as discussed by Edwards 
et al (1990) and Cai et a/ (1991), describe a wide spectrum of conditions for different 
values of power. Let a(x)=x',  K(x,?)=g(y)x" and + ) = E  xy, with c Z 0 .  A nor- 
malization condition for K(x ,  y) 

E A Saied and S A El- Wakil 

- loy .vK(x, y)  dw = ay 

allows for discrete mass loss during fragmentation events, with an ensemble averaged 
discrete loss fraction (Edwards et al 1990) satisfying O < A <  I ,  Although ,I may depend 
on y, the present work focuses on the implications of constant A, 

The normalization condition for &(x,y), implies that 

g(J')=29/y"" ~~~ ~~~~ 

with 9 = ( l  -A)(v+2)/2 and v >  -21 so that ( I )  becomes 

a 
ax 

a 
-n (x , t )= -x 'n (x ,  t)+2px" t)dy+c-(x'n(x,r)). 
at 

The physical conditions under which'(2) is valid are also given in Huang et ai (1991) 
for continuous mass loss (EZO), and in Meesters and Ernst (1987), Cheng and Redner 
(1988) and Family et a l ( l 9 8 6 )  for discrete mass loss (€=a). 

Here we give a straightforward procedure to solve (2): if one multiplies (2) by a 
factor x-" and substitutes w(u, r )=x-"n(x ,  t )  where u=x@, then (2) gives 

! , 
- a w(u, 1 )  = -uPn.(u, 1 )  + (6 tp)?p%(u. 1 )  t qu s a  - W ( U ,  t )  
at ad 

where 

P=a/9 s= I + ( y  - l)/p q = e 9  and p=(v+A(v+2)) /29  (4) 

The corresponding partial differential equation to equation (3)  is obtained by differen- 
tiating with respect to U 

~ 

wiU + AM;. + Biv, + Cw = 0 (5) 

where 

A = - q u S  

B=-q(26+p)u6-' +up 

c= (/3 +2)uP-'-q(6 - 1)(6 + p ) P  
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In the following we will give a complete solution to (9, in the case P = S -  1, by 
using Lie's similarity method. 

3. Similarity solution of the rate equation 

To consider the symmetries of the linear partial differential equation (5),  we have to 
examine a one-parameter ( E )  group of infinitesimal transformations in U, f and w given 
by 

ti= U+ U(U, I ,  1v) + O ( E 2 )  

i - l+T(u, t ,W)+O(E2)  (7) 
w=vJ+W(u,t,w)+O(&2) 

and 

I?&=w,+W"+O(2) 

@SS = 16'"" + w f O( &2) 

w7,=w,u+ W"+ O(E2) 

(8) 

where the functions' W", W"', and W'" in (8) are determined from (7) (Bluman and 
Kumei 1989). Invariance of ( 5 )  requires 

E++ A(i)W,,+ B(ti)IvS + c(ti)w =o. (9) 
By equations (7) and (S), to first order in E, this becomes 

which represents the determining equation for the group elements U, T, and iV. Solving 
(IO) for U ,  T, and W, one obtains: 

Thus we have obtained a one-parameter group of transformations depending on 
three arbitrary group constants q , .  q2, and 4,. 

The knowledge of the infinitesimal elements T, U, and W given in (1  I )  enables us 
to construct three operators (for details see Bluman and Kumei 1989 and Olver 1986) 

xI = a, 
x, = wa,, (12) 

x3 = ra, - - a. U 

P 
where 8, is the partial differential operator. 
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Table 1. Lie algebra of the rate equation 

X, X, X, 

These three linear independent vector fields determine the symmetries under which 
( 5 )  is invariant. Thus the corresponding Lie algebra of infinitesimal symmetries of ( 5 )  
is spanned by the three vector fieldsX, , X z  and X I .  The commutation relations of these 
vector fields are given in table I .  Because a linear combination of the three vector fields 
determines the general symmetry of ( 5 )  we can use a combination of the vector fields 
to classify the types of solutions. Using the adjoint representation of the Lie algebra in 
table 2, we are able to distinguish four different types of solutions corresponding to the 
basic fields of an optimal system, given by X, . X, , A', +X2, and Xz t XI. 

In the following, we  demonstrate^ that these combinations of symmetries produce 
essential types of solutions, by considering the similarity reductions obtained by solving 
the characteristic equations 

dt du dw 
T U W '  
_=-E- 

The general solution of these equations will involve two arbitrary constants, of which 
one constant takes the role of similarity variable, say s and the other constant, say 
Ffs ) ,  plays the role of similarity function. We mention that one obtains further solutions 
of (5) by applying finite group transformations to these solutions. 

4. Group invariant solutions 

In order to obtain the group invariadt solutions, let us first consider the combination 
ofXz t rX,,  where r is an arbitrary +efficient. The corresponding finite transformation 
reads 

where E is the group parameter. The similarity variable s and the similarity solution 
F ( s )  are 

s = t d  and ,w=r"'F(s). (14) 

Table 2. Adjoint iepresentatibn of the Lie-algebra 

XI x: , x, 
XI 
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Substitution of the similarity solution into (5) results in 

psc I-qps)F,+ [ ( I  + I/m +ps(p-rl(p-1))1F,+qF=O 

p = I - q ( j i + 2 / 9 + 2 )  

q= ( P + 2 ) -  rlB(P+P + 1). 

(15) 

where 

(16) 

To reduce (15) to the standard form of hypergeometric equation we rescale s by 
r=  ~ P s  

r(1- r)F,, + (( 1 + I / r )  + (p /r lp  + I / p  - 1 )r)F, + (q/rlp*)F= 0. (17) 

Of course, there are only two linearly independent solutions so there are many relations 
between these special solutions (Murphy 1960). Here we give only the general solution 

F ( r ) = C , z F ~ ( u , b , c , r ) + C ~ ~ ' - f F , ( I + u - c ,  1 + b - c , 2 - c , r )  (18) 

where CI and Cz are arbitrary constants, 

U =  -q/bqP2 

b = [ ( ~ (  I + ji + 2 p ) -  I )  & (1 + ~ ( 6 - 2 p ) +  $(p + l)2)1'2]/2qp 

c = l + l / z  

and c f n ,  n is an integer. The hypergeometric function is given by the series 

~ F I ( u ,  b, c,  r ) =  I +(ub /c ) r+  (u(Q+ l )b (b+  1))/(2!c(c+ I ) ) ? + . .  .. (19) 
If we invert all our previously used transformations applied to s and F as well, we 
obtain the complete solution to (5) for continuous loss of mass. We mention that E =  
0 will lead to the solution discussed by Baumann et U/ (1991) for discrete loss of mass, 
where (IS) reduce to the confluent hypergeometric equation if we rescale s= -z 

ZFTI + (( 1 + I / r ) - z )F:  - ( ( B  + 2 ) / P ) F =  0. (20) 

F(z)=C, IF](& c;z)+Czz'-',Fl(u-c+l,2-c;z) (21) 

The complete solution of (20) is given by 

where C, and C2 are arbitrary constants, u=(p  + 2 ) / p ,  c =  1 + I / T ,  and c#n ,  n is an 
integer. IF,(u, c ;  i) is given by 

I F ] ( U .  c ;  z)= 1 + (u/c)z+(u(u+ 1)/2!c(c+ l))z'+ .. .. (22) 
Equation (20).  with 7 = 1, leads to the solutions discussed by McGrady and Ziff (1987) 
and Corngold and Williams (1989). 

The hypergeometric type of solution of (5) is also obtained for the vector field Xn 
including only scale invariance with respect to U and 1. The corresponding similarity 
representation is given by 

s = tu0 and w=F(s) (23) 
and the reduced equation (5) reads 

P d l -  P q W ,  + ( P  - ( P  - 1 -p/q)P rls)F,+ qF= 0. (24)  



190 

A scaling of s, with r = p q s  gives the standard form of the hypergeometric equation: 

E A Saied and S A El-hakil , 

wherep and q are as given in (16) .  This has a solution as in ( 1 8 )  with c=l  (for details 
see Murphy 1960). 

For E = O ,  equation (24) reduce to the standard form of Kummer's equation by 
scaling s with s= -z 

Equation (26) is discussed by Baumann el ul(1991) for discrete loss of mass. 
Another type ofsimilarity reduction can be obtained if we examine the linear combi- 

nation XI t r X 2 .  We introduce here the parameter T lo demonstrate that not only 
XI + X 2  gives a similarity solution ~ but also a linear combination with arbitrary 
coefficients. 

~~~ 

zF,+ (1  -z)F,- ( p  t 2)~/PF=0.  (26) 

The finite transformation for this'combination can be written as 

i i=u T = t + & r  = e%. 

The general reduction of this subgroup can be obtained by the similarity representation 

s=u and w: = e"'F(s) 

The corresponding ordinary differential equation is 

-q.?Fsst ( p t  l / r ~ - ~ ) s F , t q F = O .  

A scaling of the similarity variable s by sCp= z, transforms (27) to 

2F,:+(aI f b , z ) z F z t a 2 ' F = 0  (28) 

where 

a 2 = - q / q p 2 .  

Substitule F=$U(z).  where k2+(ul  - I ) k t a 2 = 0 :  equation (28) becomes 

zUzi , , t  ( A ,  + b l z ) U , t  A2U=0  (30) 
where 

A ,  =a ,  t 2k and Az=bik 

To reduce (30) to the standard form of the confluent hypergeometric equation we 
rescale z by z = -r /b ,  : 

(31) ?U,, t ( A  I -1.) U, - ( A , / $ )  U= 0. 

For discrete loss of mass, equation (27) becomes 
The complete solution of (31) is given by (21),  where a = A 2 j b l ,  and c = A l .  

(1 + ~ - ~ / z ) s F ,  t ( p  + 2)F=0.  (32) 
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Substitute Z = S - ~ ,  then (32) has the solution 

F(z)  = Cl(z/r+ z)"'"'~ ( 3 3 )  

with C, as a constant of integration. 
Inverting all previously used transformations, we obtain 

w(u, t)=e'/'(l+ rUP)-l-Z'P ( 3 4 )  
as a solution of ( 5 )  for arbitrary parameter T and E=O. 

The last vector field of our optimal system which remains to be discussed is XI .  
Since we have here a translational symmetry in time, it is easy to get the similarity 
representation by s=u and w =  F(s). The reduced equation for this class follows from 
( 5 )  to be 

- $Fss t p F ,  + qF= 0 .  (35) 

F ( s ) = c l s ! ' ~ t c z s ' *  (36) 

y L 9 = l ( l  + P l ' I ) h K l  +Pl~) '+4ql '11r /2 .  (37) 

Equation (35) has the solution 

where C, and C, are constants of integration, and yl  and y2 are given by; 

We mention that, for the discrete loss o f  mass, equation ( 3 5 )  will lead to the solution 
discussed by Baumann et a1 (1991), where 

F(s)  Cs-(P+') ( 3 8 )  
with C a s  a constant of integration. 

By applying similarity analysis we are able to classify three types of solutions for 
equation (5). Two subgroups reduce lo the hypergeometric equation, one to the conflu- 
ent hypergeometric equation, and the other lo spatial scaling. 

5. Conclusions 

We have demonstrated that by performing Lie's similarity method to partial differential 
equation (5) resulting from integro-differential equation ( I ) ,  a great variety of solutions 
are obtained by using group transformation. Some of these solutions are discussed for 
the initial value problem by Huang et ai (1991) using Laplace transformation. Similarity 
methods deliver these special type of solution and several others for fragmentation 
processes with continuous mass loss of different types. Special cases of our results, for 
discrete loss of mass, are close to that discussed by Baumann et al(l991). 
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